Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nutr Res ; 119: 1-20, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708600

RESUMO

Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.


Assuntos
Flavina-Adenina Dinucleotídeo , Riboflavina , Humanos , Flavina-Adenina Dinucleotídeo/metabolismo , Mononucleotídeo de Flavina/metabolismo , Piridoxina , Coenzimas
3.
Mol Pharm ; 20(9): 4611-4628, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37587099

RESUMO

Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 µM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.


Assuntos
Gencitabina , Neoplasias , Animais , Espalhamento a Baixo Ângulo , Peixe-Zebra , Difração de Raios X , Lecitinas
4.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242663

RESUMO

Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.

5.
Drug Discov Today ; 26(4): 902-915, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33383213

RESUMO

Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.


Assuntos
Bioengenharia/tendências , Materiais Biomiméticos/farmacologia , Portadores de Fármacos/farmacologia , Descoberta de Drogas/tendências , Nanoestruturas/uso terapêutico , Fenômenos Fisiológicos Bacterianos , Biomimética , Sistemas de Liberação de Medicamentos/tendências , Humanos , Vacinas/farmacologia , Fenômenos Fisiológicos Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...